FC_Area

Olivier LAVIALE 2004

FC_Area

] COLLABORATORS
TITLE :
FC_Area
ACTION NAME DATE SIGNATURE
WRITTEN BY Olivier LAVIALE January 13, 2023
2004
REVISION HISTORY
NUMBER DATE DESCRIPTION NAME

FC_Area iii

Contents

1 FC_Area 1
1.1 Feelin: FC_Area o s, 1
1.2 FC_Area/FM_ASKkMInNMax o o o o 3
1.3 FC_Area/FM_BuildContextHelp e 3
1.4 FC_Area/FM_BuildContextMenu i e e e e, 4
1.5 FC_Area/FM_Cleanup o i e e 4
1.6 FC_Area/FM_Draw e e 5
1.7 FC_Area/FM_Erase e e 5
1.8 FC_Area/ FM_GOACHVE o e e e e e e e e e e e 6
1.9 FC_Area/FM_Golnactive 0 o e e 6
1.10 FC_Area/FM_HandleEvent e e 6
1.11 FC_Area/FM_Hide e e 7
1.12 FC_Area/FM_Layout e e e 7
1.13 FC_Area/FM_ModifyHandler e 7
1.14 FC_Area/FM_Setup o o o e e e e e e 8
1.15 FC_Area/ FM_Show e e 9
1.16 FC_Area/ FA_ACHVE o e e e e 9
1.17 FC_Area/FA_AreaData e e 9
1.18 FC _Area/FA_Bottom e e 10
1.19 FC_Area/FA_ChainToCycle s e e e 10
1.20 FC_Area/FA_ContextHelp e 11
1.21 FC_Area/FA_ContextMenu o i e e e e 11
1.22 FC_Area/FA_ControlChar e e 11
1.23 FC_Area/FA_Disabled e 12
1.24 FC_Area/FA_Font e e 12
1.25 FC_Area/FA_Height e e 12
1.26 FC_Area/FA_Hidden 13
1.27 FC_Area/FA_Horizontal e 13
1.28 FC_Area/FA_Left e 13
1.29 FC_Area/FA_Pressed 0 e 13

FC_Area iv
1.30 FC_Area/FA_Right 14
1.31 FC_Area/FA_Selected e e 14
1.32 FC_Area/ FA_TImEr e s, 15
1.33 FC_Area/ FA_TOD o o i e e e e e e 15
1.34 FC_Area/FA_Weight 15
1.35 FC_Area/FA_Width e 16
1.36 FC_Area/FAreaData s, 16
1.37 FC_Area/FBOX o e e e 17
1.38 FC_Area/FRect e e e 18
1.39 FC_Area/FMINMax o o o o o e e e e e e e 18
1.40 FC _Area/ areadata e 18
1.41 FC_Area/ _render o 0 0 e e e e 19
1.42 FC_Area/ _parent. i it e e e e e e e 19
1.43 FC_Area/ _flags e e e 20
1.44 FC _Area/ DOX o o e e 20
1.45 FC_Area/ X . . . o o o o o e e 21
146 FC_Area/ _y o 21
1.47 FC_Area/ W o o e e 21
148 FC_Area/ _h o 22
1.49 FC_Area/ _X2. o 22
1.50 FC_Area/ _y2. . . . o . o e e 22
1.51 FC_Area/ INNET o o e e e e e e e e 23
1.52 FC_Area/ bl o 23
1.53 FC_Area/ _br o e 23
1.54 FC_Area/ bt 24
1.55 FC_Area/ _bb. 24
1.56 FC_Area/ _mMINMaX v vt i i e e e e e e e e e e 24
1.57 FC_Area/ _MINW o o o e e e e e e e e e 25
1.58 FC_Area/_minh e e 25
1.59 FC_Area/ _MaXW v v v o e e e e e e e e e 25
1.60 FC_Area/_maxh e e 26
1.61 FC_Area/ _Pens o i it e e e e e e e e e 26
1.62 FC_Area/ _font e e e 26
1.63 FC_Area/_weight e 27
1.64 FC_Area/ _MX o o o o e e 27
1.65 FC_Area/ _MY o e e e e e e 27
1.66 FC_Area/ _MW o o e e e e 27
1.67 FC_Area/_mh e 28
1.68 FC_Area/_mMX2 o e e 28

FC_Area v

1.69 FC_Area/_my2 0 28
1.70 FC_Area/ _display e e e 29
L71 FC_Area/ _app o o o o e i e e e e e e e e e e e e e e 29
1.72 FC_Area/ _WIN o o e e e e e e 29

173 FC_Area/ _IP . . o o o o o o e e e e e e e 30

FC_Area 1/30

Chapter 1

FC Area

1.1 Feelin: FC_Area

FC_Area
IDs: Static Super: FC_Object Include: <libraries/feelin.h>

This is the most important gadget class in Feelin. It is the superclass of almost all the other Feelin gadget classes at one point
or another. It holds informations about an object current position, size and weight. It manages fonts, colors, frames (through the
FC_FrameDisplay class) and backgrounds (through the FC_ImageDisplay class).

Additionnally, the class handles events and user inputs. By setting an object FA_InputMode, you can make it behave like a button
or like a toggle gadget. That’s why there is no extra button class. A button is simply a FC_Text object with a raised frame and a
FV_InputMode_Release input mode.

Since especially FC_Group is a subclass of FC_Area, you can create rather complex buttons consisting of many other display
elements.

METHODS

FM_Setup FM_Cleanup

FM_Show FM_Hide
FM_AskMinMax FM_Layout
FM_Draw FM_Earse

FM_GoActive FM_Golnactive
FM_GoEnabled FM_GoDisabled
FM_HandleEvent FM_ModifyHandler
FM_BuildContextHelp FM_BuildContextMenu
FM_DnDQuery FM_DnDBegin
FM_DnDFinish FM_DnDReport
FM_DnDDrop

ATTRIBUTES

FA_AreaData FA_Box

FA_Left FA_Top

FA_Right FA_Bottom

FA_Width FA_Height

FC_Area

2/30

FA_MinWidth FA_MinHeight
FA_MaxWidth FA_MaxHeight
FA_FixWidth FA_FixHeight
FA_FixWidthTxt FA_FixHeightTxt
FA_Fixed FA_FixedWidth
FA_FixedHeight FA_Active
FA_Disabled FA_Selected
FA_Pressed FA_Timer
FA_Hidden FA_Draggable
FA_Dropable FA_Weight
FA_Horizontal FA_Font
FA_ChainToCycle FA_ControlChar
FA_ContextHelp FA_ContextMenu
TYPES

FAreaData FBox

FRect FMinMax

MACROS

_areadata _box

_X_y

~w_h

_x2_y2

_inner bl

_br _bt

_bb_mx

_my _mw

~mh_mx2

_my2 _minmax

_minw _minh

_maxw _maxh

_weight _parent

_flags _pens

_font _render

_display _app

_win _1p

FC_Area 3/30

1.2 FC_Area/ FM_AskMinMax

NAME
FM_AskMinMax -- (00.00) [For use within classes only]
FUNCTION

This method is sent to your object when Feelin wants to know minimun and maximum sizes of your object. These values are
needed for the correct layout, depending on the type of group that contains your object.

EXAMPLE
/* Assuming the member "AreaData" of type "FAreaData *" in the LocalObjectData structure of your object */
F_METHOD(ULONG,mAskMinMax) { struct LocalObjectData *LOD = F_LOD(Class,Obj);

/* We add values specific to our object *before* calling our superclass, FC_Area will adjust them depending on FA_MinXxx,
FA_MaxXxx or FA_FixedXxx. note that we indeed need to *add* these values, not just set them! */

/I x-size depending on objects font

_minw +=_font -> tf_XSize * 10; _maxw += _font -> tf_XSize * 20;
/I y-size

_minh += _font -> tf_YSize; _maxh += _font -> tf_YSize;

return F_SUPERDO(); }

SEE ALSO

FM_Layout

1.3 FC_Area/ FM_BuildContextHelp

NAME

FM_BuildContextHelp -- (02.00)

SYNOPSIS

F_DoA(Obj,FM_BuildContextHelp,struct FS_BuildContextHelp *);
FUNCTION

Allows dynamic creation of context help.

When Feelin is about to show a new context help, it sends a FM_BuildContextHelp to the FC_Window object. The method
travels throught the object tree until an object returns the FS_BuildContextHelp structure, previously filled with appropriate
information.

When FM_BuildContextHelp reaches FC_Area, it just fill the field Help with the contents of FA_ContextHelp (if any). You
needn’t care about this method if you only have static, non-changing context helps.

However, if your context helps depend on some internal states of your objects or on the mouse position within your objects, you
have to have a subclass which overrides FM_BuildContextHelp, creates a nice string and set it.

INPUTS

A struct FS_BuildContextHelp holding current MouseX and MouseY (relative to window coordinates), and the entry Help which
should be filled with the appropriate string.

RESULT

A pointer to the struct FS_BuildContextHelp passed in if you have set the field Help with your string, NULL otherwise.
SEE ALSO

FA_ContextHelp FA_ContextMenu

FC_PopHelp

FC_Area 4/30

1.4 FC_Area/ FM_BuildContextMenu

NAME

FM_BuildContextMenu -- (02.00)

SYNOPSIS

F_DoA(Obj,FM_BuildContextMenu,struct FS_BuildContextMenu *);
FUNCTION

Allows dynamic creation of context menus.

When Feelin is about to show a new context menu, it sends a FM_BuildContextMenu to the root object of the FC_Window
object. The method travels throught the object tree until an object returns the FS_BuildContextMenu structure, previously filled
with appropriate information.

When FM_BuildContextMenu reaches FC_Area, it just fill the field Menu with the contents of FA_ContextMenu (if any) and set
the field ContextOwner to itself. You needn’t care about this method if you only have static, non-changing context menus.

However, if your context menus depend on some internal states of your objects or on the mouse position within your objects, you
have to have a subclass which overrides FM_BuildContextMenu, creates a nice Menu object and returns it.

RESULT

Fill the field Menu of the FS_BuildContextMenu structure with a pointer to your FC_Menu object, and the field ContextOwner
with a pointer to your object.

The fields Menu and ContextOwner should be left untouch if you failed to create a FC_Menu object. This will allow the
FC_Window object to open it’s own instead, but please warn the user in this case e.g. using F_LogA(), as he may gets confused...

EXAMPLE
/* This example is directly taken from FC_Area.*/
F_METHODM(APTR,Area_ContextMenu,FS_BuildContextMenu) { struct LocalObjectData *LOD = F_LOD(Class,Obj);

if (LOD -> ContextMenu) { if (between(Msg -> MouseX, _x1, _x2) && between(Msg -> MouseY, _yl, _y2)) { Msg -> Menu =
LOD -> ContextMenu; Msg -> ContextOwner = Oby;

return Msg; } }
return NULL; }
NOTE

Feelin will never dispose the object you return. You must take care of this yourself, e.g. by storing a pointer somewhere in your
instance data and killing it on the next invocation of FM_BuildContextMenu or on FM_Dispose.

SEE ALSO
FA_ContextHelp FA_ContextMenu

1.5 FC_Area/FM_Cleanup

NAME
FM_Cleanup -- (00.00) [For use within classes only]
FUNCTION

This method is sent to your object when e.g. the window containing your object is closed. You have to free all resources allocated
during FM_Setup .

FC_Area 5/30

1.6 FC_Area/FM_Draw

NAME

FM_Draw -- (00.00) [For use within classes only]
SYNOPSIS

F_DoA(Obj,FM_Draw,FS_Draw *);
F_Do(Obj,FM_Draw,ULONG Flags);
FUNCTION

Whenever Feelin feels (indeed) that your object should render itself, it sends you a FM_Draw method. This happens e.g. when a
window is openend for the first time, after a window was resized.

Together with FM_Draw comes a flag value that indicates which parts of the object are to be redrawn. The only interesting bits
in this flag value are FF_Draw_Object and FF_Draw_Update. When FF_Draw_Object is set, Feelin wants you to do a complete
redraw of your object. FF_Draw_Update is used by Feelin when the frame doesn’t have to be redrawn, only the inner area of the
object will be cleared and redrawn. You can use this flags for private requirement with the F_Draw() function call. You can also
use one of the FF_Draw_Custom_X flags if you need something special.

A FC_Render object holds information about the rendering evironment (display, application, window, rastport, pens...). You can
obtain a pointer to this object from the FAreaData structure of your object. You can also use the _render macro.

NOTE

FM_Draw is the only place where you are allowed to render!
SEE ALSO

F_Draw()

1.7 FC_Area/FM_Erase

NAME

FM_Erase -- (01.00)

SYNOPSIS

F_DoA(Obj,FM_Erase,struct FS_FErase *);
F_Do(Obj,FM_Erase,struct FeelinRect *Rect, ULONG Flags);
FUNCTION

Use this method to draw a specific part of an object’s background.
INPUTS Rect

Pointer to a struct FeelinRect describing the area to fill.

Flags

FF_Erase_Region If this flag is set the struct FeelinRect is used as a struct Region (holding multiple rectangles). This region is a
standard graphics.library region, created with NewRegion() and setup with appropiate function e.g. OrRectRegion().

Using regions facilities you can fill multiple areas in a single step and also create rather complex rendering and refreshing. Such
facilities are used by FC_Group when clearing damaged zones in complex rendering mode.

FF_Erase_Fill This method takes care of rendering context and possibilities e.g. the rectangle or region is not filled if the window
is in refresh mode and a same background has already been used to clear the region, unless the flag FF_FErase_Fill is set.

If this flag is set the background is always drawn (even if not necessary).

NOTE

FC_Area 6/30

Don’t worry about bitmap mapping, FC_ImageDisplay is used to render graphics and is clever enough to adjust patterns by itself
and render them nicely.

SEE ALSO
FA_Back

1.8 FC_Area/FM_GoActive

NAME

FM_GoActive -- (00.00) [For use within classes only]

FUNCTION

The methods FM_GoActive / FM_Golnactive are sent to an object when it gets activated / desactivated.

You may not send these methods yourself, they are sent to you by Feelin when your object becomes the active one. If you pass
these methods to your superclass, FC_Area will draw the active object frame. If you don’t, nothing will be drawn and you’re
responsible for displaying this state yourself, e.g. with a cursor (as FC_String objects).

SEE ALSO
FA_Active

1.9 FC_Area/FM_Golnactive

NAME

FM_Golnactive -- (00.00) [For use within classes only]

FUNCTION

The methods FM_GoActive / FM_Golnactive are sent to an object when it gets activated / deactivated.

You may not send these methods yourself, they are sent to you by Feelin when your object becomes the active one. If you pass
these methods to your superclass, FC_Area will draw the inactive object frame. If you don’t, nothing will be drawn and you’re
responsible for displaying this state yourself, e.g. with a cursor (as string objects).

SEE ALSO
FA_Active

1.10 FC_Area/FM_HandleEvent

NAME

FM_HandleEvent -- (00.00) [For use within classes only]

SYNOPSIS

F_DoA(Obj,FM_HandleEvent,struct FS_HandleEvent *);

F_Do(Obj,FM_HandleEvent,struct FeelinEvent *FEv);

FUNCTION

This method is invoked whenever one of an event handlers trigger signals arrives.

INPUTS

FEv - Pointer to a struct FeelinEvent created within the FM_Application_Run method and sent to the FC_Window object.
RESULT

Return FF_HandleEvent_Eat if the event was for you and you want Feelin to stop calling other event handlers in the chain.
SEE ALSO

FM_ModifyHandler FM_Window_AddEventHandler

FC_Area 7130

1.11 FC_Area/ FM_Hide

NAME

FM_Hide -- (00.00) [For use within classes only]

FUNCTION

Your object will receive this method right before the window that contains your object is closed.
SEE ALSO

FM_ Show

1.12 FC_Area/FM_Layout

NAME
FM_Layout -- (00.00) [For use within classes only]
FUNCTION

Your object will receive this method after the function F_Layout() has modified its coordinates. This method is curently only
implemented by FC_Group and is used to compute and set coordinates of its children.

NOTE

You should rarely implement this method in a class.

1.13 FC_Area / FM_ModifyHandler

NAME

FM_ModifyHandler -- (03.00)

SYNOPSIS

F_Do(obj,FM_ModifyHandler,ULONG nAdd,ULONG nRem);
FUNCTION

Event handlers introduced in FC_Window V6.12 allow custom classes to receive IDCMP events. You need to manage a Feelin-
EventHandler to receive these events. The FM_ModifyHandler method creates and disposes this precious structure on the fly,
depending on the modifications applied to the events requested.

INPUTS
nAdd - IDCMP events to add. nRem - IDCMP events to remove.
RESULT

A pointer to a struct FeelinEventHandler if you have requested some events, or NULL if either modifications set events to NULL
or allocation of the structure failed.

EXAMPLE

FM_Setup: F_Do(obj,FM_ModifyHandler,IDCMP_RAWKEY | IDCMP_MOUSEBUTTONS,NULL);
FM_Cleanup: F_Do(obj,FM_ModifyHandler, NULL,IDCMP_RAWKEY | IDCMP_MOUSEBUTTONYS);
EXAMPLE

F_METHODM(ULONG, mHandleEvent,FS_HandleEvent) { struct LocalObjectData *LOD = F_LOD(Class,Obj); struct Feelin-
Event *FEv = Msg -> FEyv;

FC_Area 8/30

if (FEv -> Key) { switch (FEv -> Key) { case FV_KEY_LEFT: LOD -> sx = -1; break; case FV_KEY_RIGHT: LOD ->sx = 1;
break; case FV_KEY_TOP: LOD -> sy = -1; break; case FV_KEY_BOTTOM: LOD -> sy = 1; break; default: return NULL }

F_Draw(Obj,FF_Draw_Update);

return FF_HandleEvent_Eat; } else { switch (FEv -> Class) { case IDCMP_MOUSEBUTTONS: { if (FEv -> Code == SELECT-
DOWN) { if (between(FEv -> MouseX,_x(Obj),_x2(Obj)) && (between(FEv -> MouseY,_y(Obj),_y2(0bj))) { LOD ->x = FEv
->MouseX; LOD ->y = FEv -> MouseY;

F_Draw(Obj,FF_Draw_Update);

/* Only request IDCMP_MOUSEMOVE if we really need it */
F_Do(Obj,FM_ModifyHandler,IDCMP_MOUSEMOVE,0);

return FF_HandleEvent_Eat; } } else { /* reject IDCMP_MOUSEMOVE because Imb is no longer pressed */
F_Do(Obj,FM_ModifyHandler,0,IDCMP_MOUSEMOVE); } break;

case IDCMP_MOUSEMOVE: if (between(FEv -> MouseX,_x(Obj),_x2(0bj)) && (between(FEv -> MouseY,_y(Obj),_y2(Obj)))
{ LOD -> x = FEv -> MouseX; LOD ->y = FEv -> MouseY;

F_Draw(Obj,FF_Draw_Update);

return FF_HandleEvent_Eat; } break; }

/* Passing FM_HandleEvent to the super class is only necessary if you rely on FC_Area input handling (FA_InputMode). */
} return NULL; }

Take a look at class3 source code to see how things work.

NOTE

FM_ModifyHandler invokes automatically FM_Window_AddEventHandler and FM_Window_RemEventHandler on the win-
dow object of the object.

1.14 FC_Area/FM_Setup

NAME

FM_Setup -- (00.00) [For use within classes only]
SYNOPSIS

F_DoA(Obj,FM_Setup,struct FS_Render);
F_Do(obj,FM_Setup,struct FeelinRender *Render);
FUNCTION

Since your object doesn’t know anything about display environment after it is created with FM_New, Feelin will send you a
FM_Setup when it is about to open a window containing your object.

The first thing you have to do is to pass FM_Setup to your super class an return FALSE on failure. After this, you can calculate
some internal data or allocate some display buffers. Return TRUE if everything went ok or FALSE when you discovered any
errors. If you return FALSE, the root object of the window containing the object will recieve a FM_Cleanup method.

INPUTS

Render - a pointer to a struct FeelinRender. This structure is created by the window object and shared by all objects of the
window. This structure remains valid between FM_Setup / FM_Cleanup.

SEE ALSO
FM_Cleanup

FC_Area 9/30

1.15 FC_Area/FM_Show

NAME
FM_Show -- (00.00) [For use within classes only]
FUNCTION

Once the window is opened, your object will receive a FM_Show. If you have some window/rastport environment dependant
things to do, FM_Show is the correct place. Intuition like gadgets would for example do an AddGadget() here.

NOTE

Note that you should not render during FM_Show. Usually, Feelin classes won’t need to implement this method. And please do
not use intuition gadgets but create your own. Feelin purpose is to get rid of intuition so please follow the rule.

SEE ALSO
FM_Hide

1.16 FC_Area/ FA_Active

NAME
FA_Active -- (00.00) [ISG], BOOL
FUNCTION

Get and set the active state of an object. If the object is member of the window’s cycle chain, this attribute is triggered each time
the object become the active one or is no longer the active one. If FA_Active is set to TRUE the FM_GoActive method will be
invoked on the object by FC_Area, else the FM_Golnactive method will be invoked instead.

SEE ALSO
FA_Selected FAreaData

1.17 FC_Area/FA_AreaData

NAME

FA_AreaData -- (04.00) [..G], FAreaData *
FUNCTION

Address of the FAreaData structure of the object.

The FAreaData structure is very important to obtain information about the application, the window and the group an object
belongs to. It is also very important to know how the object should be rendered...

"

_mx(Obj)" is not allowed in Feelin. Any information about the area *MUST#* be obtained from the FAreaData structure. Of
course, attributes can also be used to obtain everything needed from an object but it’s harder to use multiple attributes than a
single structure.

Generaly, you obtain the FAreaData pointer within the FM_New method. The pointer is valid during the lifetime of the object,
because the FAreaData structure is a local data of the object and not an allocated structure.

Save this pointer in your own local object data (LOD) to use it later. I recommand you to name the field "AreaData", so you’ll
be able to use macros to easly access FAreaData fields.

EXAMPLE
struct LocalObjectData { FAreaData * AreaData; struct FeelinSignalHandler SignalHandler; };
F_METHOD(ULONG,mNew) { struct LocalObjectData *LOD = F_LOD(Class,Obj);

FC_Area 10/30

LOD -> AreaData = (FAreaData *) F_Get(Obj,FA_AreaData);

LOD -> SignalHandler.Object = Obj; LOD -> SignalHandler.Method = FM_Strobo; LOD -> SignalHandler.Flags = FF_SignalHandler_1
LOD -> SignalHandler.fsh_Secs = 0; LOD -> SignalHandler.fsh_Micros = 30000;

return F_SUPERDO(); }

F_METHOD(ULONG,mAskMinMax) { struct LocalObjectData *LOD = F_LOD(Class,Obj);

_minw += 30; _minh += 30;

return F_SUPERDO(); }

F_METHOD(void,mDraw) { struct LocalObjectData *LOD = F_LOD(Class,Obj); struct RastPort *rp = _rp;
F_SUPERDO();

_APen(Rnd(1 << rp -> BitMap -> Depth)); _Boxf(_mx,_my,_mx2,_my?2); }

SEE ALSO
FAreaData

1.18 FC_Area/FA Bottom

NAME

FA_Bottom -- (00.00) [..G], ULONG

FUNCTION

You can use this to read the current position and dimension of an object, if you e.g. need to pop up some requester below.
Of course, this attribute is only valid when the parent window of the object is currently open.

SEE ALSO

FA_Left FA_Top

FA_Right FA_Width

FA_Height FAreaData

1.19 FC_Area/ FA_ChainToCycle

NAME
FA_ChainToCycle -- (01.00) [I..], BOOL
FUNCTION

Feelin GUI can be fully controled with the keyboard. All you have to do to add an object to the window’s cycle chain is to set
the attribute the TRUE. Setting the attribute to FALSE disabe the automation.

Default: TRUE.
SEE ALSO
FM_Window_ChainAdd FM_Window_ChainRem

FC_Area 11/30

1.20 FC_Area/ FA_ContextHelp

NAME
FA_ContextHelp -- (02.00) [ISG], STRPTR
FUNCTION

Specifies a context sensitive popup help for the current object. Popup helps are simple string used by a FC_PopHelp object
managed by the Window object to as display context help.

Have a look at FC_PopHelp documentation to know how things are handled.

NOTE

Feelin uses the same tree-like technique as always (e.g. with Drag’n’Drop) to find out whichs context help to use on a certain
mouse position. This allows you to have a context help for a group and different context helps for its children.

SEE ALSO
FM_BuildContextMenu FA_Menu_Selected

1.21 FC_Area/ FA_ContextMenu

NAME
FA_ContextMenu -- (02.00) [ISG], FObject
FUNCTION

Specifies a context sensitive popup menu for the current object. Popup menus are created using FC_Menu and subclasses, like
standard Feelin menus.

Whenever the user hits the RMB and the mouse is above the parent object, Feelin will present the popup menu instead of the
windows menu.

Note: Feelin will not dispose the FA_ContextMenu object when the object is disposed. You must take care of this object yourself.
This is because FC_Menu object of FA_ContextMenu do not actually belong to their parent objects, it’s just a reference. You are
allowed to use a single FC_Menu object, or even a submenu of a FC_Menu object, as FA_ContextMenu for different objects.

Menus (and submenus) can be shared with objects in the same window, other windows and even application. FC_Menu is very
flexible and easy to setup.

NOTE

Feelin uses the same tree-like technique as always (e.g. with Drag’n’Drop) to find out whichs context menu to use on a certain
mouse position. This allows you to have a context menu for a group and different context menus for its children.

SEE ALSO
FM_BuildContextMenu FA_Menu_Selected

1.22 FC_Area/ FA_ControlChar

NAME

FA_ControlChar -- (01.00) [ISG], CHAR

FUNCTION

This character will be used as a shortcut to your object.
NOTE

FC_Text objects modify this attribute when they find an underscore in their string. You will rarely need to set this attribute
yourself.

SEE ALSO
FA_Text

FC_Area 12/30

1.23 FC_Area/ FA_Disabled

NAME
FA_Disabled -- (01.00) [ISG], BOOL
FUNCTION

Disable or enable an object. Setting this attribute causes an object to become disabled, it gets a ghost pattern and doesn’t respond
to user input any longer.

Disabled objects cannot be activated with the cycle keys.

Using FA_Disabled on a group of objects will disable all objects within that group.
SEE ALSO

FAreaData

1.24 FC_Area/FA_Font

NAME

FA_Font -- (01.00) [ISG], SPTPTR

SPECIAL INPUTS

FV_Font_Inherit

FUNCTION

Every FC_Area object can have its own font.

The font is loaded through the FM_Application_LoadFont method. See method’s documentation to know all possible values.
If the font is modified while the object is displayed a new layout is computed is needed and the object is updated.
NOTE

Getting this attribute returns the struct TextFont * of the opened font.

SEE ALSO

FAreaData

1.25 FC_Area/FA_Height

NAME

FA_Height -- (00.00) [..G], ULONG

FUNCTION

You can use this to read the current position and dimension of an object, if you e.g. need to pop up some requester below.
Of course, this attribute is only valid when the parent window of the object is currently open.

SEE ALSO

FA_Left FA_Top

FA_Right FA_Bottom

FA_Width FAreaData

FC_Area 13/30

1.26 FC_Area/ FA_Hidden

NAME
FA_Hidden -- (00.00) [ISG], BOOL
FUNCTION

Objects with this attribute set are not displayed. You can set FA_Hidden at any time, causing objects to appear and to disappear
immediately. A new layout is calculated whenever some objects are shown or hidden. When necessary, Feelin will resize the
parent window to make place for the new objects.

SEE ALSO
FAreaData

1.27 FC_Area/ FA_Horizontal

NAME

FA_Horizontal -- (00.00) [1.G], BOOL

FUNCTION

A general purpose attribute. It’s an easy way telling your object how it has to look like.

This attribute is especially used by groups to make their layout horizontal or vertical, or by sliders to define their orientation.
SEE ALSO

FAreaData

1.28 FC _Area/FA Left

NAME
FA_Left - (00.00) [..G], ULONG
FUNCTION

You can use this to read the current position and dimension of an object, if you e.g. need to pop up some requester below.
Of course, this attribute is only valid when the parent window of the object is currently open.

SEE ALSO

FA_Left FA_Right

FA_Bottom FA_Width

FA_Height FAreaData

1.29 FC_Area/ FA_Pressed

NAME

FA_Pressed -- (00.00) [ISG], BOOL

FUNCTION

Get and set the pressed state of an object. This attribute is triggered by some user action, depending on the input mode:

FV_InputMode_Release: - TRUE when left mouse button is pressed.

FC_Area 14 /30

- FALSE when left mouse button is released and the mouse is still over the object box (otherwise it will be cleared too, but
without triggering a notification event).

FV_InputMode_Immediate - undefined, use FA_Selected for this.

FV_InputMode_Toggle - undefined, use FA_Selected for this.

Waiting for FA_Pressed getting FALSE is the usual way to react on button objects.

NOTE

While an object with a FV_InputMode_Release is pressed the attribute FA_Timer is increased every INTUITICK.
SEE ALSO

FA_Selected FA_Timer

FAreaData

1.30 FC_Area/FA_Right

NAME

FA_Right -- (00.00) [..G], ULONG

FUNCTION

You can use this to read the current position and dimension of an object, if you e.g. need to pop up some requester below.
Of course, this attribute is only valid when the parent window of the object is currently open.

SEE ALSO

FA_Left FA_Top

FA_Bottom FA_Width

FA_Height FAreaData

1.31 FC_Area/ FA_Selected

NAME
FA_Selected -- (00.00) [ISG], BOOL
FUNCTION

Get and set the selected state of an object. This attribute can be triggered by the user clicking on the object (or using the keyboard),
depending on the input mode:

FV_InputMode_Release: - TRUE when left mouse button is pressed. - FALSE when left mouse button is released. - FALSE
when the object is selected and the mouse leaves the gadget box. - TRUE when the mouse renters the object box.

FV_InputMode_Immediate: - TRUE when left mouse button is pressed.
FV_InputMode_Toggle: - Toggled when left mouse button is pressed.

Of course you may set this attribute yourself, e.g. to adjust the state of a checkmark object.
A selected object will display its alternative frame and get the alternative background.
SEE ALSO

FA_InputMode FA_Pressed

FA_Timer FAreaData

FC_Area 15/30

1.32 FC_Area/FA_Timer

NAME
FA_Timer -- (00.00) [..G], LONG
FUNCTION

FA_Timer gets triggered when a FV_InputMode_Release object is pressed and (after a little delay) increases every INTUITICK
as long as the mouse remains over the object.

This makes it possible to have buttons repeatedly cause some actions, just like the arrow objects of a scrollbar.
SEE ALSO
FA_Pressed FA_Selected

1.33 FC_Area/FA_Top

NAME
FA_Top -- (00.00) [..G], ULONG
FUNCTION

You can use this to read the current position and dimension of an object, if you e.g. need to pop up some requester below.
Of course, this attribute is only valid when the parent window of the object is currently open.

SEE ALSO

FA_Left FA_Right

FA_Bottom FA_Width

FA_Height FAreaData

1.34 FC_Area/FA_Weight

NAME
FA_Weight -- (00.00) [I..], UWORD
FUNCTION

The weight of an object determines how much room it will get during the layout process. Imagine you have a 100 pixel wide
horizontal group with two string objects. Usually, each object will get half of the room and be 50 pixels wide. If you feel the left
gadget is more important and should be bigger, you can give it a weight of 200 (and 100 for the right gadget). Because the left
gadget is twice as "heavy" as the right gadget, it will become twice as big (about 66 pixel) as the right one (34 pixel).

Of course giving weights only makes sense if the object is resizable. An object with a weight of 0 will always stay at its minimum
size.

By default, all objects have a weight of 100.
SEE ALSO
FAreaData

FC_Area 16/30

1.35 FC_Area/FA_Width

NAME

FA_Width -- (00.00) [..G], ULONG

FUNCTION

You can use this to read the current position and dimension of an object, if you e.g. need to pop up some requester below.
Of course, this attribute is only valid when the parent window of the object is currently open.

SEE ALSO

FA_Left FA_Top

FA_Right FA_Bottom

FA_Height FAreaData

1.36 FC_Area/ FAreaData

NAME

FAreaData -- (04.00)

STRUCT

struct FeelinAreaData { FObject Parent; FObject Next; FObject Prev;
FRender *Render; ULONG Flags;

FBox Box; Flnner Inner; FMinMax MinMax;

ULONG *Pens; struct TextFont *Font; UWORD Weight; };
FUNCTION

This structure holds precious information such as the application, the window and the group the object belongs to, and general
layout and graphic information.

Because FC_Object uses an opaque structure to keep as much independence as possible from its subclasses, its not a good idea
(not to say dangerous) to make any assumption about the offset from the start of the object to this local data. In order to obtain a
pointer to the FAreaData structure you *MUST* use the FA_AreaData attribute.

Using "_app(Obj)" like MUI does is not possible with Feelin. You may complain about this but since ’Obj’ may refers to nearly
anything, it’s a security gap that Feelin doesn’t permit.

FIELDS Parent (FObject)

Parent of this object. Usualy the parent is a sub-class object of FC_Group}, but if the object is the root object of a window, its
parent will be the window itself. You can also obtain the parent of an object with the FA_Parent attribute.

Next, Prev (FObject)

These fields are used by FC_Group to link objects one to another.
Render (FRender *)

The shared FC_Render object used by every object in a window.
Flags (ULONG)

GENERAL LAYOUT FLAGS

FF_Horizontal - If set, the layout of the object should be horizontal, otherwise the object should have a vertical layout. This flag
reflects the FA_Horizontal attribute.

FF_Area_SetMinW, FF_Area_SetMinH - When these flags are set, the minimum dimensions should be set in the FMinMax
structure during the FM_AskMinMax method.

FC_Area 17 /30

FF_Area_SetMaxW, FF_Area_SetMaxH - When these flags are set, the maximum dimensions should be set in the FMinMax
structure during the FM_ AskMinMax method.

GENERAL STATE FLAGS

FF_Area_Selected - If set, the object is currently selected (e.g. a button pressed down, or a check-box checked). This flag should
be used to render the "selected" state. It reflects the FA_Selected attribute.

FF_Area_Pressed - If set, the object is currently pressed (e.g. a button pressed down). This flag should not be used to render any
state, its only goal is to triggers the FA_Pressed attribute.

FF_Area_Active - If set, the object is currently active (e.g. an object in the cycle chain, a FC_String object). This flag can be
read if you handle the active and inactive state of an object (and the rendering of these states). It reflects the FA_Active attribute.

FF_Area_Disabled - If set, the object is currently disabled (e.g. an object ghosted which receives no inputs). This flag can be
read if you handle the disabled and enabled state of an object (and the rendering of these states). It reflects the FA_Disabled
attribute.

GENERAL RENDER FLAGS

FF_Area_CanShow - If set, the object can be shown and participate in the layout. Only "shown" object can be drawn and receive
inputs. This flag reflect the FA_Hidden attribute.

FF_Area_CanDraw - If set, the object can be drawn. This flag is only set when all conditions are meet for the object to actualy
be drawn : object has been setuped successfully, object can be shown, object is currently within a displayable region, rendering
is not forbidden.

Box (FBox)

This FBox structure holds the coordinates of the object. These coordinates are only valid between the FM_Show and FM_Hide
methods.

Inner (FInner)
This FInner structure holds the spacing dimensions between the object itself and its frame.
MinMax (FMinMax)

This FMinMax structure holds the minimum and maximum dimensions of the object. These dimensions are computed during
the FM_AskMinMax method and are only valid between the FM_Show and FM_Hide methods.

Pens (ULONG *)

An array of ULONG values describing which pens should be used to render the object. This pointer may change as the state of
the object changes e.g. if the user has defined soften colors for the "disabled" state.

Font (struct TextFont *

Text font used by this object. Text rendered in this object should use this font. The font can be modified with the FA_Font
attribute. Note that the field is a pointer to a struct TextFont (the opened font structure).

Weight (UWORD)

Weight of the object. This field has no general use, but can be used to create balancing stuff (it is actualy used by FC_Balance).
This field is usualy set at initialisation time with the FA_Weight attribute.

1.37 FC_Area/ FBox

NAME

FBox -- (00.00)

STRUCT

struct FeelinBox { WORD x,y; UWORD w;,h; };
FUNCTION

FC_Area

18 /30

This structure holds the coordinates and dimensions of an object.
FIELDS x,y

Coordinates of an object.

w,h

Dimensions of an object.

1.38 FC_Area/ FRect

NAME

FRect -- (00.00)

STRUCT

struct FeelinRect { WORD x1,yl; WORD x2,y2; };
FUNCTION

This structure holds the coordinates of an object.
FIELDS x1,y1

Up corner left of an object.

w,h

Down corner right of an object.

NOTE

This structure is often used to represent a region.

1.39 FC_Area/ FMinMax

NAME
FMinMax -- (00.00)
STRUCT

struct FeelinMinMax { UWORD MinW,MinH; UWORD MaxW,MaxH; };

FUNCTION

This structure holds the minimum and maximum dimensions of an object.

FIELDS MinW,MinH
Minimum width and height of an object.
w,h

Maximum width and height of an object.

1.40 FC_Area/ _areadata

NAME
_areadata -- (04.00)
DEFINE

FC_Area 19/30

#define _areadata ((FAreaData *)(LOD -> AreaData))
FUNCTION
Use this macro to obtain the pointer of the FAreaData structure stored in the LocalObjectData structure of your object.

This macro needs the variable "LOD’ to be defined, with the member ’AreaData’ of type FAreaData . All other FC_Area macros
depend on the _areadata macro. You can easily redefine the macro to your needs and use the other ones without modifing them.

EXAMPLE

struct LocalObjectData { FAreaData *AreaData; ... };

F_METHOD(ULONG,mNew) { struct LocalObjectData *LOD = F_LOD(Class,Obj);
_areadata = (FAreaData *) F_Get(Obj,FA_AreaData);

return F_SUPERDO(); }

F_METHOD(ULONG,mAskMinMax) { struct LocalObjectData *LOD = F_LOD(Class,Obj);
_minw += 10; _maxw += 100; _minh += 10; _maxh += 100;

return F_SUPEROD(); }

SEE ALSO

FA_AreaData

1.41 FC_Area/ _render

NAME

_render -- (00.00)

DEFINE

#define _render (_areadata -> Render)

FUNCTION

Use this macro to obtain the pointer of the FC_Render object stored in the FAreaData structure of your object.
SEE ALSO

_app _display

_Ip _win

1.42 FC_Area/_parent

NAME

_parent -- (00.00)

DEFINE

#define _parent (_areadata -> Parent)
FUNCTION

Use this macro to obtain the parent of an object.

Usualy the parent is a sub-class object of FC_Group}, but if the object is the root object of a window, its parent will be the
window itself. You can also obtain the parent of an object with the FA_Parent attribute.

SEE ALSO

_app _win

FC_Area 20/30

1.43 FC_Area/ _flags

NAME

_flags -- (00.00)

DEFINE

#define _flags (_areadata -> Flags)
FUNCTION

Use this macro to read the flags of an object.
Please, *do not* modify the flags !
GENERAL LAYOUT FLAGS

FF_Horizontal - If set, the layout of the object should be horizontal, otherwise the object should have a vertical layout. This flag
reflects the FA_Horizontal attribute.

FF_Area_SetMinW, FF_Area_SetMinH - When these flags are set, the minimum dimensions should be set in the FMinMax
structure during the FM_AskMinMax method.

FF_Area_SetMaxW, FF_Area_SetMaxH - When these flags are set, the maximum dimensions should be set in the FMinMax
structure during the FM_ AskMinMax method.

GENERAL STATE FLAGS

FF_Area_Selected - If set, the object is currently selected (e.g. a button pressed down, or a check-box checked). This flag should
be used to render the "selected" state. It reflects the FA_Selected attribute.

FF_Area_Pressed - If set, the object is currently pressed (e.g. a button pressed down). This flag should not be used to render any
state, its only goal is to triggers the FA_Pressed attribute.

FF_Area_Active - If set, the object is currently active (e.g. an object in the cycle chain, a FC_String object). This flag can be
read if you handle the active and inactive state of an object (and the rendering of these states). It reflects the FA_Active attribute.

FF_Area_Disabled - If set, the object is currently disabled (e.g. an object ghosted which receives no inputs). This flag can be
read if you handle the disabled and enabled state of an object (and the rendering of these states). It reflects the FA_Disabled
attribute.

GENERAL RENDER FLAGS

FF_Area_CanShow - If set, the object can be shown and participate in the layout. Only "shown" object can be drawn and receive
inputs. This flag reflect the FA_Hidden attribute.

FF_Area_CanDraw - If set, the object can be drawn. This flag is only set when all conditions are meet for the object to actualy
be drawn : object has been setuped successfully, object can be shown, object is currently within a displayable region, rendering
is not forbidden.

1.44 FC_Area/ _box

NAME

_box -- (00.00)

DEFINE

#define _box (_areadata -> Box)

FUNCTION

Use this macro to access the FBox structure holding the coordinates and dimensions of an object.
SEE ALSO

_X_y
“w_h

FC_Area

21/30

1.45 FC_Area/ _x

NAME

_x -- (00.00)
DEFINE

#define _x (_box .x)
FUNCTION

Use this macro to obtain the left edge coordinate of an object.

SEE ALSO
_y_w
~h _box

_mx

1.46 FC_Area/_y

NAME

_y -- (00.00)
DEFINE

#define _y (_box .y)
FUNCTION

Use this macro to obtain the top edge coordinate of an object.

SEE ALSO
X _W
_h _box

my

1.47 FC_Area/_w

NAME

_w --(00.00)

DEFINE

#define _w (_box .w)

FUNCTION

Use this macro to obtain the width of an object.

SEE ALSO

FC_Area

22/30

1.48 FC_Area/_h

NAME

_h--(00.00)

DEFINE

#define _h (_box .h)

FUNCTION

Use this macro to obtain the height of an object.
SEE ALSO

Xy

~w _box

_mh

1.49 FC_Area/ x2

NAME

_x2 --(00.00)

DEFINE

#define _x2(_x+_w-1)
FUNCTION

Use this macro to obtain the right edge coordinate of an object.

SEE ALSO
_mx2 _y2

1.50 FC_Area/_y2

NAME

_y2 -- (00.00)

DEFINE

#define _y2 (_y+_h-1)

FUNCTION

Use this macro to obtain the top edge coordinate of an object.
SEE ALSO

_my2 _x2

FC_Area 23/30

1.51 FC_Area/ _inner

NAME

_inner -- (00.00)

DEFINE

#define _inner (_areadata -> Inner)

FUNCTION

Use this macro to access the FInner structure holding inner dimensions (offset between the frame’s border an the object itself).
SEE ALSO

_bl _br

_bt_bb

1.52 FC_Area/ bl

NAME

_bl -- (00.00)

DEFINE

#define _bl (_inner .I)

FUNCTION

Use this macro to obtain the dimension of the left space between the frame’s border and the actual itself.
SEE ALSO

_br _bt

_bb

1.53 FC _Area/ _br

NAME

_br -- (00.00)

DEFINE

#define _br (_inner .r)

FUNCTION

Use this macro to obtain the dimension of the right space between the frame’s border and the actual itself.
SEE ALSO

_bl _bt

_bb

FC_Area 24 /30

1.54 FC_Area/ _bt

NAME

_bt -- (00.00)

DEFINE

#define _bt (_inner .t)

FUNCTION

Use this macro to obtain the dimension of the top space between the frame’s border and the actual itself.
SEE ALSO

_bl _br

_bb

1.55 FC_Area/ _bb

NAME

_bb -- (00.00)

DEFINE

#define _bb (_inner .b)

FUNCTION

Use this macro to obtain the dimension of the bottom space between the frame’s border and the actual itself.
SEE ALSO

_bl _br

_bt

1.56 FC_Area/_minmax

NAME

_minmax -- (00.00)

DEFINE

#define _minmax (_areadata -> MinMax)

FUNCTION

Use this macro to access the FMinMax structure holding the minimum and maximum dimensions of an object.
SEE ALSO

_minw _minh

_maxw _maxh

FC_Area

25/30

1.57 FC_Area/_minw

NAME

_minw -- (00.00)

DEFINE

#define _minw (_minmax .MinW)

FUNCTION

Use this macro to obtain the minimum width of an object.
SEE ALSO

_minh _maxw

_maxh

1.58 FC_Area/_minh

NAME

_minh -- (00.00)

DEFINE

#define _minh (_minmax .MinH)

FUNCTION

Use this macro to obtain the minimum height of an object.

SEE ALSO
_minw _maxw

_maxh

1.59 FC _Area/_ maxw

NAME

_maxw -- (00.00)

DEFINE

#define _maxw (_minmax .MaxW)

FUNCTION

Use this macro to obtain the maximum width of an object.

SEE ALSO
_minw _minh

_maxh

FC_Area

26/30

1.60 FC_Area/_maxh

NAME

_maxh -- (00.00)

DEFINE

#define _maxh (_minmax .MaxH)

FUNCTION

Use this macro to obtain the maximum height of an object.

SEE ALSO
_minw _minh

_maxw

1.61 FC_Area/_pens

NAME

_pens -- (00.00)

DEFINE

#define _pens (_areadata -> Pens)

FUNCTION

Use this macro to obtain an array of ULONG values describing which pens should be used to render the object. This pointer may

change as the state of the object changes e.g. if the user has defined different colors for the "disabled" state.

SEE ALSO
FA_ColorScheme

1.62 FC _Area/ font

NAME

_font -- (00.00)

DEFINE

#define _font (_areadata -> Font)

FUNCTION

Use this macro to obtain the Text font used by this object. Text rendered in this object should use this font. The font can be

modified with the FA_Font attribute. Note that the field is a pointer to a struct TextFont (the opened font structure).

SEE ALSO
FA_Font

FC_Area 27 /30

1.63 FC_Area/_weight

NAME

_weight -- (00.00)

DEFINE

#define _weight (_areadata -> Weight)
FUNCTION

Use this macro to obtain the weight of an object. This field has no general use, but can be used to create balancing stuff (it is
actualy used by FC_Balance). This field is usualy set at initialisation time with the FA_Weight attribute.

1.64 FC_Area/_mx

NAME

_mx -- (00.00)

DEFINE

#define _mx (_x + _bl)

FUNCTION

Use this macro to obtain the left edge of the object itself, not its frame, like _x does.
SEE ALSO

_my _mw

~mh_mx2

1.65 FC_Area/_my

NAME

_my -- (00.00)

DEFINE

#define _my (_y + _bt)

FUNCTION

Use this macro to obtain the top edge of the object itself, not its frame, like _y does.
SEE ALSO

_mxX _mw

_mh _my?2

1.66 FC_Area/_mw

NAME

_mw -- (00.00)

DEFINE

#define _mw (_w - _bl - _br)

FC_Area 28 /30

FUNCTION

Use this macro to obtain the width of the object itself, exluding its frame.
SEE ALSO

_mx _my

_mh

1.67 FC_Area/_mh

NAME

_mh -- (00.00)

DEFINE

#define _mh (_h - _bt-_bb)

FUNCTION

Use this macro to obtain the height of the object itself, exluding its frame.
SEE ALSO

_mx _my

_mw

1.68 FC_Area/_mx2

NAME

_mx2 -- (00.00)

DEFINE

#define _mx2 (_x2 - _br)

FUNCTION

Use this macro to obtain the right edge of the object itself, not its frame, like _x2 does.
SEE ALSO

my?2

1.69 FC_Area/_my2

NAME

_my?2 -- (00.00)

DEFINE

#define _my2 (_y2-_bb)

FUNCTION

Use this macro to obtain the bottom edge of the object itself, not its frame, like _y2 does.
SEE ALSO

mx2

FC_Area 29/30

1.70 FC_Area/ _display

NAME

_display -- (00.00)

DEFINE

#define _display (_render -> Display)

FUNCTION

Use this macro to obtain a pointer to the FC_Display object managing the display context in which the window is opened.
NOTE

This macro assumes that _render is valid (the object is ready).

SEE ALSO

—app _1p

_win

1.71 FC_Area/_app

NAME

_app -- (00.00)

DEFINE

#define _app (_render -> Application)

FUNCTION

Use this macro to obtain a pointer to the application an object belongs to.
NOTE

This macro assumes that _render is valid (the object is ready).

SEE ALSO

_display _rp

win

1.72 FC_Area/_win

NAME

_win -- (00.00)

DEFINE

#define _win (_render -> Window)

FUNCTION

Use this macro to obtain a pointer to the FC_Window object an object belongs to.
NOTE

This macro assumes that _render is valid (the object is ready).
SEE ALSO

_app _display

_Ip

FC_Area 30/30

1.73 FC_Area/ _rp

NAME

_rp -- (00.00)

DEFINE

#define _rp (_render -> RPort)
FUNCTION

Use this macro to obtain a pointer to the RastPort in which objects should be rendered. This RastPort may be different than the
window’s RastPort.

NOTE

This macro assumes that _render is valid (the object is ready).
SEE ALSO

_app _display

win

	FC_Area
	Feelin : FC_Area
	FC_Area / FM_AskMinMax
	FC_Area / FM_BuildContextHelp
	FC_Area / FM_BuildContextMenu
	FC_Area / FM_Cleanup
	FC_Area / FM_Draw
	FC_Area / FM_Erase
	FC_Area / FM_GoActive
	FC_Area / FM_GoInactive
	FC_Area / FM_HandleEvent
	FC_Area / FM_Hide
	FC_Area / FM_Layout
	FC_Area / FM_ModifyHandler
	FC_Area / FM_Setup
	FC_Area / FM_Show
	FC_Area / FA_Active
	FC_Area / FA_AreaData
	FC_Area / FA_Bottom
	FC_Area / FA_ChainToCycle
	FC_Area / FA_ContextHelp
	FC_Area / FA_ContextMenu
	FC_Area / FA_ControlChar
	FC_Area / FA_Disabled
	FC_Area / FA_Font
	FC_Area / FA_Height
	FC_Area / FA_Hidden
	FC_Area / FA_Horizontal
	FC_Area / FA_Left
	FC_Area / FA_Pressed
	FC_Area / FA_Right
	FC_Area / FA_Selected
	FC_Area / FA_Timer
	FC_Area / FA_Top
	FC_Area / FA_Weight
	FC_Area / FA_Width
	FC_Area / FAreaData
	FC_Area / FBox
	FC_Area / FRect
	FC_Area / FMinMax
	FC_Area / _areadata
	FC_Area / _render
	FC_Area / _parent
	FC_Area / _flags
	FC_Area / _box
	FC_Area / _x
	FC_Area / _y
	FC_Area / _w
	FC_Area / _h
	FC_Area / _x2
	FC_Area / _y2
	FC_Area / _inner
	FC_Area / _bl
	FC_Area / _br
	FC_Area / _bt
	FC_Area / _bb
	FC_Area / _minmax
	FC_Area / _minw
	FC_Area / _minh
	FC_Area / _maxw
	FC_Area / _maxh
	FC_Area / _pens
	FC_Area / _font
	FC_Area / _weight
	FC_Area / _mx
	FC_Area / _my
	FC_Area / _mw
	FC_Area / _mh
	FC_Area / _mx2
	FC_Area / _my2
	FC_Area / _display
	FC_Area / _app
	FC_Area / _win
	FC_Area / _rp

